Яблоко падает на землю закон

ЯБЛОКО И НЬЮТОН: ВЕЛИЧАЙШАЯ ВЫДУМКА В ИСТОРИИ ФИЗИКИ?

1548860043199774518

Публикуем главу из книги «Вся физика в 50 экспериментах». В ней рассказывается, что история с яблоком, упавшим на голову Ньютона, – похоже, просто выдумка!

Правдива ли история об упавшем яблоке? Законы динамики

Ньютон родился в Англии, в графстве Линкольншир, и именно туда он отправился, когда в 1665 году Кембриджский университет закрылся из-за чумы, проведя на родине около 18 месяцев. Вероятно, он, замкнутый человек, получивший достаточно времени на размышления, большую часть своих блестящих научных работ задумал именно в это время.

Если верить легенде, перед его домом росла очень старая яблоня. Однажды, увидев, как яблоко упало с ветки, Ньютон подумал, что что-то должно было потянуть плод вниз. Значит, сила, притянувшая яблоко, должна распространяться от Земли вверх, по меньшей мере до вершины яблони. А может, она достигает Луны? Если так, то она должна повлиять и на ее орбиту.

Легенда гласит, что Ньютон схватил попавшийся под руку документ о праве его матери на землю и принялся делать расчеты на обороте.

Он понял, что сила притяжения уменьшается с высотой, на которой находится объект, и догадался, что она меняется обратно пропорционально квадрату расстояния между объектом и центром Земли. Результаты этих расчетов, как он сам заметил, сходились почти идеально. Он также предположил, что подобное притяжение может быть причиной и других орбитальных движений, и назвал его «всемирным тяготением».

Об этой истории не было ничего слышно еще почти 20 лет, пока три друга, Эдмунд Галлей, Роберт Гук и Кристофер Рен, встретившись, как обычно, в лондонской кофейне, не принялись спорить о траектории кометы, когда она приближается к Солнцу. Гук заявил, что он выполнит необходимые расчеты, но так и не справился с этим.

Галлей был одним из немногих друзей Ньютона, и когда в 1684 году, оказавшись неподалеку, Галлей навестил его в Кембридже, то спросил Ньютона, какова будет траектория кометы, если принять во внимание закон притяжения с обратным квадратом. Ньютон сразу ответил, что это эллипс, и добавил, что знает ответ, потому что уже вычислил его.

Продемонстрировать решение Ньютон не смог, не сумев отыскать доказательство среди бумаг, однако пообещал выполнить вычисления заново и прислать их Галлею.

В ноябре того же года Ньютон прислал ему девятистраничную статью «О движении тел по орбите», в которой выводились следствия закона обратных квадратов, а в 1687 году вышел фундаментальный труд Ньютона «Математические начала натуральной философии».

В этой большой и сложной книге, написанной по-латыни, Ньютон раскрыл не только закон обратных квадратов и свою концепцию всемирного тяготения, но и законы движения, названные его именем, хотя первые два из них были хорошо известны и до него. Словом, «Начала» описывали все основные принципы классической механики.

Уильям Стьюкли был антикварием — историком и археологом, первым исследовавшим Стоунхендж, а также другом Ньютона и его первым биографом. Стьюкли в красках (и с гордостью) описывает события 15 апреля 1726 года:

Я навестил сэра Исаака Ньютона. и провел весь день с ним. Стояла прекрасная погода, после обеда мы сели в саду под яблонями и пили чай. Среди прочего он рассказал мне, что при таких же обстоятельствах впервые понял природу притяжения материи — по яблоку, падающему с дерева.
Почему это яблоко всегда неизменно падает перпендикулярно на землю? Почему оно не падает кверху, вбок или наискосок?

Подобные вопросы, по словам Стьюкли, «крутились в его голове», и «с этого он начал обдумывать и искать характер и законы этой всеобщей силы в материи и применять их к движению небесных тел, к притяжению материи и постигать истинное строение Вселенной».

Другой биограф Ньютона, его помощник Джон Кондуитт, в 1727 году в своем сочинении также приводит историю с яблоком.

Итак, Ньютон рассказал о яблоке по меньшей мере двум людям. Но к этому моменту прошло уже 60 лет с тех пор, как, по его словам, эта история приключилась, и вполне возможно, Ньютон ее просто выдумал.

Зачем он это сделал?

Из писем Ньютона до 1682 года следует, что он придерживался теории вихря, впервые предложенной Декартом, который утверждал, что планеты мчатся вокруг Солнца в эфирном вихре подобно тому, как вода утекает через сливное отверстие. Но в 1682 году эта теория была подорвана кометой Галлея, орбита которой оказалась ретроградной, то есть комета двигалась в направлении, противоположном движению всех планет.

Гук писал о гравитации еще в 1674 году и подошел очень близко к решению тяготения как математической проблемы.

В эссе «О движении Земли», опубликованном в 1674 году, Гук писал о гравитации, что ее «притягивающая сила действует гораздо сильнее, если приблизить друг к другу центры взаимодействующих тел». Гук мыслил в верном направлении, но не сумел выразить свои соображения математически.

Читайте также:  Черешня в нижнем поволжье

Ньютон ни за что в жизни не признал бы, что Гук хоть в чем-то его обошел. Вполне вероятно, Ньютон сочинил историю с яблоком спустя столько лет лишь затем, чтобы подтвердить, что он нашел решение задачи еще в 1666 году — задолго до Гука.

Дубликаты не найдены

m1346357 494703772

1615493926179387861

В американской школе перестали называть законы Ньютона его именем: он был белым.

City Journal опубликовал статью о том, как в частных школах США борются с расизмом и превосходством белых. Один из старшеклассников элитной школы в Бронксе (Нью-Йорк) рассказал журналисту издания, как на факультативах преподают физику:

«Мы больше не говорим «законы Ньютона». Мы называем их тремя фундаментальными законами физики. Они [преподаватели] говорят, что нам нужно «отделить белизну» от физики. И мы должны признать, что в физике есть нечто большее, чем просто Ньютон».

Ранее стало известно о новой учебной программе в Буффало: школьникам будут рассказывать, что «все белые играют определённую роль в сохранении расизма»

1613311861254992080

Первый профессиональный популяризатор науки

Продолжаю серию постов по истории популяризации науки. В этот раз речь пойдет про Англию. 1650-х годах там (в Оксфорде) сформировался кружок из полутора десятка относительно молодых и образованных людей, который они сами называли просто The Company или «невидимый колледж».

Во главе с Джоном Уилкинсом они проводили различные эксперименты. Сначала воспроизводили опыты Галилея и Торричелли, потом стали придумывать свои. Эта деятельность оживилась в 1653 году, когда в Оксфорд из Лондона приехал физик, химик и богослов в одном флаконе, граф Коркский, более известный в истории науки как Роберт Бойль. Вскоре у Бойля появился молодой лаборант из студентов Оксфорда – Роберт Гук. Он то и будет главным героем сегодняшнего поста.

1613566518163495175

Участники «колледжа» развлекались от души – ставили различные опыты с воздушным насосом, наблюдали Луну в восьмидесятифутовый телескоп, вводили различные инъекции в кровь животным и проектировали корабли для подводного плавания. И через какое-то время решили, что им пора расширять аудиторию, с целью показать, что в науку могут не только итальянцы, но и англичане. А чтобы сразу поставить дело на надежную базу – решили заручиться поддержкой короля. Взошедший на престол по итогам гражданской войны Карл II считал, что наука вещь для государства полезная и даже проводил какие-то химические опыты во дворце (короли могут развлекаться по-разному). Так что идею оксфордцев (большей частью уже перебравшихся в Лондон, где стало безопасно) он поддержал и на свет родилось Лондонское королевское общество.

Роберт Гук не вошел официально в число его основателей (поскольку был всего лишь лаборантом у Бойла), но его роль была тоже очень важной. Гук, в отличие от «отцов-основателей» (в большинстве своем – университетских преподавателей) был не только простым лаборантом, но и незнатного происхождения. Проще говоря, довольно беден. Поэтому было решено, что в обмен на некоторое жалование из бюджета Общества, он возьмет на себя подготовку экспериментальной работы и проведение еженедельных открытых семинаров с демонстрацией научных достижений. Поэтому его можно считать одним из первых профессиональных популяризаторов науки.

1613566519199568233

Собственно, на этой стороне его деятельности я бы и хотел сосредоточиться больше всего. Хотя Гук, несомненно, прежде всего был талантливым ученым, его называют одним из «отцов экспериментальной физики». Да и коллеги Гука уважали и уже через год работы избрали полноценным членом Королевского общества.

Что касается семинаров, перед Гуком была поставлена двойная задача. Во-первых, развивать экспериментальные исследования природы, а во-вторых, демонстрация возможностей науки далеким от науки людям. В состав общества входили многие аристократы, и чтобы они платили членские взносы (а общество на них жило), нужно чтобы им было интересно. Поэтому к каждому семинару (а они проводились еженедельно) Гук готовит эксперименты и «вопросник» – список вопросов, на которые нужно отвечать, чтобы всесторонне исследовать данное явление.

Читайте также:  Груша феерия на урале

Для такой работы Гуку пришлось самому изготовить немало приборов, а некоторые и вовсе разработать с нуля. В результате, вклад Гука-изобретателя в копилку человеческого знания впечатляющ.

Вот лишь некоторые примеры. Исследуя законы механики, он придумал механизмы воспроизведения нужного ему движения или для преобразования одного типа движения в другой. И в результате изобрел карданный шарнир, который мог передавать вращательное движение между двумя осями, расположенными под небольшим углом друг к другу. Этот шарнир широко применяется до сих пор.

1613566709159356612

Небольшое уточнение. Википедия и ряд других источников указывают, что карданный шарнир изобрел итальянец Кардано, в честь которого он и назван. Да и сделал это на несколько десятилетий раньше Гука. Но тут есть, как говорится, нюанс. Интернета в ту пору не было. Энциклопедий и справочников тоже не было. И массовой механизации тоже не было. Поэтому периодически случались истории, когда в разное время в разных местах разные люди изобретали один и тот же «велосипед». С карданным шарниром так и вышло: это мы сейчас знаем про Кардано, соответственно и называем его карданом. Гук же о нем ничего не знал (механизмы Кардано были в единичных экземплярах и не в Англии), изобретал его сам и называл по-другому. Поэтому неверным было бы написать «Гук первым изобрел. ». Но он его именно изобрел, а не скопировал.

Другая его работа касалась усовершенствования зубчатой передачи: его идея заключалась в том, что между зубцами колес не должно происходить удара, а это возможно, если зубцы колес находятся в постоянном контакте друг с другом, а точка их контакта лежит на прямой, соединяющей центры колес.

Еще один пример. Область научных интересов Гука была очень широка и однажды он заинтересовался микрографией – изучением объектов, которые обычным глазом толком и не разглядеть. Дальнейшая история – это типичный Гук. Сначала он сам сделал микроскоп (Алиэкспресс еще не было) Потом провел полсотни исследований, рассматривая все, что оказывалось под рукой и подходило по размерам. Но как было продемонстрировать их результаты другим? И Гук стал перерисовывать то, что увидел. А рисовал он очень хорошо. На фото, которое я прикрепил справа фото блохи, сделанное в наше время, слева – рисунок Гука.

1613566738160196807

Когда он показывал этот рисунок на своих семинарах, дамы падали в обморок (видимо, представив, что по их одежде периодически прыгает ЭТО). Чтобы рисунки быстро не истрепались, Гук стал делать на их основе детальные гравюры. Опять сам, своими руками. А когда рисунков набралось много – издал книгу «Микрография» со своими иллюстрациями. Благодаря им, научный трактат стал популярен среди людей, от науки вроде бы далеких. Так получилась еще одна известная научно-популярная книга. Но известная, увы, не у нас – ее до сих пор так и не перевели на русский язык.

Перечислять работы Гука можно еще долго. Но есть один важный нюанс. Он постоянно не завершал свои исследования, когда из-за нехватки денег, когда из-за дефицита времени (надо было готовить следующий семинар). Эту работу проделывали другие, тот же Бойль, они же получали всю славу. Что доводило Гука до белого каления, он ввязывался в споры о приоритете, но они редко заканчивались для него успешно, ведь формально его работу завершали другие (пусть часто им была проделана основная ее часть), либо, проделав схожие исследования позже, документировали свои результаты, чем Гук тоже не всегда заморачивался.

Ситуацию усугубляло то, что Гук был, говоря современным языком, интровертом и человеком вспыльчивым. А еще – горбуном со слабым здоровьем, что вкупе с загрузкой тоже порой служило причиной бросить исследования, не доведя их до конца. В общем, так он и вошел в историю как автор закона упругости и изобретатель ряда механизмов. Хотя его вклад в науку намного больше. А сколько людей (и весьма влиятельных в Англии людей) поменяло свое отношение к науке благодаря его еженедельным семинарам и подсчитать невозможно.

Источник

Законы Ньютона для школьников

placeholder

Исаак Ньютон и его законы: Freepick

Законы Ньютона описывают множество физических явлений, которые происходят во Вселенной. Со времен Ньютона наука колоссально продвинулась вперед, но и сейчас при проектировании новых автомобилей и запуске на Луну космических кораблей ученые ориентируются на эти законы. Их всего три, и каждому школьнику придется их изучить.

Читайте также:  Яблоки запеченные с сахаром ккал

Первый закон Ньютона

Из наблюдений и опыта известно, что тела двигаются, когда на них действуют другие тела. Например, мяч бросаем, напрягая для толчка мышцы руки. Когда его ловим, то замедляем и останавливаем тоже рукой. Если другие тела не действуют, то тело или останется в покое, или будет совершать равномерное и прямолинейное движение.

Что такое магнитное поле, его свойства и источники

Это правило известно как закон инерции, а движение, которое в этом случае возникает, называют движением по инерции. Например:

Первым об инерции написал еще Галилей, а Исаак Ньютон сформулировал правило в форме закона. Он звучит так: существуют инерциальные системы отсчета, относительно которых тело при отсутствии на него внешнего воздействия (или при его компенсации) будет сохранять состояние покоя или равномерно прямолинейно двигаться.

placeholder

Иллюстрация законов Ньютона: Freepick

Суть первого закона легко продемонстрировать на примере: если на абсолютно ровной дороге толкнуть тележку и пренебречь силой трения колес и сопротивлением воздуха, то она на одинаковой скорости будет катиться бесконечно долгий период времени.

Сила тяжести: формула, единицы измерения, особенности

Но существуют и неинерциальные системы, в которых скорости тел могут меняться без силы. Например, такая система — автобус, в котором пассажиры едут, не ощущая движения. Стоит ему резко затормозить, как всех бросит вперед, хотя сила при этом не действует, то есть движение относительно автобуса оказывается беспричинным. В этом случае говорят о неинерциальной системе отсчета.

Движение в таких системах происходит с ускорением. При расчетах учитываются силы инерции.

Таким образом, говоря о скорости тела, обязательно указывают, относительно какой инерциальной системы отсчета она измерялась, так как для разных систем она может быть разной. Ускорение тела во всех системах сохраняется.

Второй закон Ньютона

Почему Луна не падает на Землю: пояснения

Рассмотрим такой опыт:

Ускорение рассчитывают по формуле: a = 2S/t², где S — путь, t — время его прохождения.

Если использовать различные силы и отмечать полученное ускорение, то окажется, что отношение силы к ускорению — постоянная величина для конкретного шара. Этот показатель называют массой.

Масса — мера инертности тела. Она указывает на то, как сильно тело оказывает сопротивление изменениям скорости. Чем больше масса, тем сложнее разгонять и останавливать тело.

Движение Земли вокруг Солнца и вокруг своей оси

Как же Ньютон сформулировал второй закон? Звучит он так: ускорение, которое получает тело, прямо пропорционально равнодействующей всех сил, действующих на него, и обратно пропорционально его массе (F = m×a).

При проведении расчетов на основании второго закона Ньютона важно выбирать единицы силы и массы. В СИ единица массы — килограмм (кг), а единица силы — ньютон (Н). Один ньютон равняется силе, под воздействием которой тело с массой 1 кг получает ускорение 1 м/с².

Третий закон Ньютона

Сила никогда не возникает самостоятельно, это явление предполагает наличие другой силы. Когда одно тело действует с определенной силой на другое («действие»), то и второе тело с определенной силой действует на первое («противодействие»):

Теплопроводность воды и льда и их особенности

placeholder

Земля и Луна: Freepick

Что еще известно о силах, которые возникают во время взаимодействия двух тел? Рассмотрим следующий опыт:

Опыт показывает, что при действии одного тела на другое с определенной силой, второе также действует на первое. Сила этого действия равна первой по модулю и противоположна по направлению. При этом обе силы находятся на одной прямой. Такова формулировка закона равенства действия и противодействия, открытого Ньютоном и известного как третий закон движения.

Закон Паскаля простыми словами: суть и значимость

В жизни сталкиваемся с этим законом довольно часто. Так, в при перетягивании каната каждая из команд действует, согласно третьему закону Ньютона, на другую (через канат) с одинаковой силой. При этом выигрывают (перетягивают канат) не те, кто сильнее тянет, а те, кто лучше упирается в поверхность Земли.

Третий закон Ньютона:

Состояния воды в природе: условия перехода, необычные факты

Классическая механика и ее принципы формировались длительное время. На протяжении многих веков ученые выяснили законы, по которым двигаются материальные тела. Ньютон в работе «Математические начала натуральной философии» обобщил накопленные знания. Выдающийся физик сформулировал три закона, которые известны всему миру.

editor in chief

Уникальная подборка новостей от нашего шеф-редактора

Источник

Поделиться с друзьями
admin
Едим и готовим из экологически чистых продуктов
Adblock
detector